Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/95872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Boen
dc.contributor.authorLiu, Xinfengen
dc.contributor.authorOo, Than Zawen
dc.contributor.authorXing, Guichuanen
dc.contributor.authorMathews, Nripanen
dc.contributor.authorSum, Tze Chienen
dc.date.accessioned2012-07-04T09:10:23Zen
dc.date.accessioned2019-12-06T19:22:35Z-
dc.date.available2012-07-04T09:10:23Zen
dc.date.available2019-12-06T19:22:35Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationWu, B., Liu, X., Oo, T. Z., Xing, G., Mathews, N., & Sum, T. C. (2012). Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. Plasmonics, 7(4), 677-684.en
dc.identifier.urihttps://hdl.handle.net/10356/95872-
dc.identifier.urihttp://hdl.handle.net/10220/8286en
dc.description.abstractA cost-effective approach to enhancing broadband light trapping in ultrathin bulk heterojunction organic photovoltaic (OPV) devices is proposed. This is achieved by simply inserting an array of Al nanodisks at the interface of the ITO anode and the organic active layer; forming circular plasmonic nanopatch cavities (between the nanodisks and the Al cathode) that sandwich the active layer. Through interactions between the surface plasmon polaritons localized at the nanodisk and the cathode, a tunable broadband resonance peak spanning 450–700 nm in the scattering cross-section spectrum is formed, thereby enhancing the electromagnetic field in the active layer. Compared to an OPV device with a 60-nm-thick PCPDTBT/PC60BM layer, our numerical simulations reveal that integrated absorption enhancements of up to 40 % can be achieved in an equivalent device integrated with an array of nanodisks with a diameter of 100 nm and a periodicity of 250 nm. From the analysis of the structure–performance relationships, implications for the design of these nanopatch cavities for light harvesting in ultrathin OPV devices are discussed.en
dc.format.extent21 p.en
dc.language.isoenen
dc.relation.ispartofseriesPlasmonicsen
dc.rights© 2012 Springer Science+Business Media. This is the author created version of a work that has been peer reviewed and accepted for publication by Plasmonics, Springer Science+Business Media. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1007/s11468-012-9358-0 ].en
dc.subjectDRNTU::Science::Mathematicsen
dc.titleResonant aluminum nanodisk array for enhanced tunable broadband light trapping in ultrathin bulk heterojunction organic photovoltaic devicesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doihttp://dx.doi.org/10.1007/s11468-012-9358-0en
dc.description.versionAccepted versionen
dc.identifier.rims163802en
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Plasmonics-revised-final.pdf386.9 kBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.