Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/95936
Title: | Deformation-controlled design of reinforced concrete flexural members subjected to blast loadings | Authors: | Rong, Hai-Cheng. Li, Bing. |
Keywords: | DRNTU::Engineering | Issue Date: | 2008 | Source: | Rong, H. C., & Li, B. (2008). Deformation-controlled design of reinforced concrete flexural members subjected to blast loadings. Journal of Structural Engineering, 134(10), 1598–1610. | Series/Report no.: | Journal of structural engineering | Abstract: | Both maximum displacement and displacement ductility factors should be considered in the design of a blast-resistant structure since both parameters correlate with an expected performance level of a reinforced concrete RC structural member during a blast event. The blast-resistant design procedure discussed in this paper takes into account both the maximum displacement and displacement ductility responses of an equivalent single-degree-of-freedom SDOF system, while the response of the SDOF system is made equivalent to the corresponding targets of design performance. Some approximate errors are present when comparing the actual responses of the structural member, which has been designed for blast loading, and their corresponding design performance targets. Two indices are defined to quantify the approximation errors, and their expressions are obtained through comprehensive numerical and statistical analyses. By using the error indices, the design procedure is then modified such that the approximate responses of the RC member are equivalent to the targets of the design performance. The modified procedure is implemented in three design examples and numerically evaluated. It is concluded that the modified procedure can be used more effectively in order to ensure that the actual responses of designed members reflect the respective targets of design performance. | URI: | https://hdl.handle.net/10356/95936 http://hdl.handle.net/10220/8402 |
DOI: | 10.1061/(ASCE)0733-9445(2008)134:10(1598) | Schools: | School of Civil and Environmental Engineering | Research Centres: | Protective Technology Research Centre | Rights: | © 2008 ASCE. This is the author created version of a work that has been peer reviewed and accepted for publication Journal of Structural Engineering, American Society of Civil Engineers. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1598)]. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | CEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Deformation-Controlled Design of Reinforced Concrete Flexural Members Subjected to Blast Loadings.pdf | 2.21 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
20
14
Updated on Nov 25, 2024
Web of ScienceTM
Citations
20
12
Updated on Oct 29, 2023
Page view(s) 5
1,125
Updated on Dec 11, 2024
Download(s) 5
710
Updated on Dec 11, 2024
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.