Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/95939
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tai, Xue Cheng | en |
dc.contributor.author | Hahn, Jooyoung | en |
dc.contributor.author | Wu, Chunlin | en |
dc.date.accessioned | 2013-07-15T07:02:57Z | en |
dc.date.accessioned | 2019-12-06T19:23:32Z | - |
dc.date.available | 2013-07-15T07:02:57Z | en |
dc.date.available | 2019-12-06T19:23:32Z | - |
dc.date.copyright | 2011 | en |
dc.date.issued | 2011 | en |
dc.identifier.citation | Hahn, J., Wu, C., & Tai, X. C. (2012). Augmented Lagrangian Method for Generalized TV-Stokes Model. Journal of Scientific Computing, 50(2), 235-264. | en |
dc.identifier.uri | https://hdl.handle.net/10356/95939 | - |
dc.description.abstract | In this paper, we propose a general form of TV-Stokes models and provide an efficient and fast numerical algorithm based on the augmented Lagrangian method. The proposed model and numerical algorithm can be used for a number of applications such as image inpainting, image decomposition, surface reconstruction from sparse gradient, direction denoising, and image denoising. Comparing with properties of different norms in regularity term and fidelity term, various results are investigated in applications. We numerically show that the proposed model recovers jump discontinuities of a data and discontinuities of the data gradient while reducing stair-case effect. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Journal of scientific computing | en |
dc.rights | © 2011 Springer Science+Business Media, LLC. | en |
dc.title | Augmented Lagrangian method for generalized TV-stokes model | en |
dc.type | Journal Article | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en |
dc.identifier.doi | 10.1007/s10915-011-9482-6 | en |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
50
26
Updated on Feb 26, 2021
PublonsTM
Citations
50
24
Updated on Feb 21, 2021
Page view(s) 50
317
Updated on Feb 28, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.