Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/96017
Title: | Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells | Authors: | Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Say Chye Joachim Yang, Liang |
Issue Date: | 2013 | Source: | Wang, V. B., Chua, S.-L., Cao, B., Seviour, T., Nesatyy, V. J., Marsili, E., et al. (2013). Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells. PLoS ONE, 8(5), e63129. | Series/Report no.: | PLoS ONE | Abstract: | The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. | URI: | https://hdl.handle.net/10356/96017 http://hdl.handle.net/10220/11919 |
ISSN: | 1932-6203 | DOI: | 10.1371/journal.pone.0063129 | Rights: | © 2013 The Authors. This paper was published in PLoS ONE and is made available as an electronic reprint (preprint) with permission of The Authors. The paper can be found at the following official DOI: [http://dx.doi.org/10.1371/journal.pone.0063129]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | CEE Journal Articles MSE Journal Articles SBS Journal Articles SCBE Journal Articles SCELSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity.pdf | 750.77 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
57
Updated on Feb 26, 2021
PublonsTM
Citations
5
47
Updated on Mar 3, 2021
Page view(s) 5
955
Updated on Mar 4, 2021
Download(s) 5
533
Updated on Mar 4, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.