Please use this identifier to cite or link to this item:
Title: Hybrid RF mapping and Kalman filtered spring relaxation for sensor network localization
Authors: Fong, A. C. M.
Seet, Boon-Chong
Zhang, Qing
Foh, Chuan Heng
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2011
Series/Report no.: IEEE sensors journal
Abstract: An accurate and low-cost hybrid solution to the problem of autonomous self-localization in wireless sensor networks (WSN) is presented. The solution is designed to perform robustly under challenging radio propagation conditions in mind, while requiring low deployment efforts, and utilizing only low-cost hardware and light-weight distributed algorithms for location computation. Our solution harnesses the strengths of two approaches for environments with complex propagation characteristics: RF mapping to provide an initial estimate of each sensor's position based on a coarse-grain RF map acquired with minimal efforts; and a cooperative light-weight spring relaxation technique for each sensor to refine its estimate using Kalman filtered inter-node distance measurements. Using Kalman filtering to pre-process noisy distance measurements inherent in complex propagation environments, is found to have significant positive impacts on the subsequent accuracy and the convergence of our spring relaxation algorithm. Through extensive simulations using realistic settings and real data set, we show that our approach is a practical localization solution which can achieve sub-meter accuracy and fast convergence under harsh propagation conditions, with no specialized hardware or significant efforts required to deploy.
DOI: 10.1109/JSEN.2011.2173190
Rights: © 2011 IEEE.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.