Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96047
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJia, Yanen
dc.date.accessioned2013-07-10T07:26:43Zen
dc.date.accessioned2019-12-06T19:24:52Z-
dc.date.available2013-07-10T07:26:43Zen
dc.date.available2019-12-06T19:24:52Z-
dc.date.copyright2011en
dc.date.issued2011en
dc.identifier.urihttps://hdl.handle.net/10356/96047-
dc.identifier.urihttp://hdl.handle.net/10220/11122en
dc.description.abstractIn coding theory, quasi-twisted (QT) codes form an important class of codes which has been extensively studied. We decompose a QT code to a direct sum of component codes – linear codes over rings. Furthermore, given the decomposition of a QT code, we can describe the decomposition of its dual code. We also use the generalized discrete Fourier transform to give the inverse formula for both the nonrepeated-root and repeated-root cases. Then we produce a formula which can be used to construct a QT code given the component codes.en
dc.language.isoenen
dc.relation.ispartofseriesFinite fields and their applicationsen
dc.rights© 2011 Elsevier Inc.en
dc.subjectDRNTU::Scienceen
dc.titleOn quasi-twisted codes over finite fieldsen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1016/j.ffa.2011.08.001en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.