Please use this identifier to cite or link to this item:
Title: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease
Authors: Muthukaruppan, S.
Er, Meng Joo
Keywords: DRNTU::Engineering::Mechanical engineering::Bio-mechatronics
Issue Date: 2012
Series/Report no.: Expert systems with applications
Abstract: This paper presents a particle swarm optimization (PSO)-based fuzzy expert system for the diagnosis of coronary artery disease (CAD). The designed system is based on the Cleveland and Hungarian Heart Disease datasets. Since the datasets consist of many input attributes, decision tree (DT) was used to unravel the attributes that contribute towards the diagnosis. The output of the DT was converted into crisp if–then rules and then transformed into fuzzy rule base. PSO was employed to tune the fuzzy membership functions (MFs). Having applied the optimized MFs, the generated fuzzy expert system has yielded 93.27% classification accuracy. The major advantage of this approach is the ability to interpret the decisions made from the created fuzzy expert system, when compared with other approaches.
DOI: 10.1016/j.eswa.2012.04.036
Rights: © 2012 Elsevier Ltd.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Citations 50

Updated on Mar 6, 2021

Citations 50

Updated on Mar 1, 2021

Page view(s) 5

Updated on Mar 6, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.