Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/96226
Title: | Elastic and nonlinear response of nanomechanical graphene devices | Authors: | Annamalai, M. Mathew, S. Jamali, M. Zhan, D. Palaniapan, M. |
Keywords: | DRNTU::Science | Issue Date: | 2012 | Source: | Annamalai, M., Mathew, S., Jamali, M., Zhan, D., & Palaniapan, M. (2012). Elastic and nonlinear response of nanomechanical graphene devices. Journal of Micromechanics and Microengineering, 22(10), 105024-. | Series/Report no.: | Journal of micromechanics and microengineering | Abstract: | In this paper, a simple and effective experimental approach has been used to extract the mechanical properties of suspended nanomechanical graphene devices using atomic force microscopy (AFM). The main objective of this work is to study the deflection behaviour of graphene devices as a function of layer number (1–5 layers) and anchor geometry which has not been widely investigated so far. Elastic and nonlinear responses of the devices were obtained using AFM nanoindentation. The estimated linear (2.5 N m−1 to 7.3 N m−1), nonlinear spring constants (1 × 1014 N m−3 to 15 × 1014 N m−3) and pretension (0.79 N m−1 to 2.3 N m−1) for the monolayer (3.35 Å) to five layer (16.75 Å) graphene devices of diameter 3.8 µm show an obvious increasing trend with increase in graphene thickness. The effect of anchor geometry on the force versus deflection behaviour of these devices has also been investigated. The Raman spectroscopy results confirm the absence of defects in the pristine and indented devices. Using the continuum mechanics model, the Young's modulus and 2D elastic modulus of a monolayer graphene device have been found to be 1.12 TPa and 375 N m−1 respectively. The high stiffness and low mass of these devices make them well suited for sensing applications. | URI: | https://hdl.handle.net/10356/96226 http://hdl.handle.net/10220/11452 |
DOI: | 10.1088/0960-1317/22/10/105024 | Rights: | © 2012 IOP Publishing Ltd. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
10
36
Updated on Feb 7, 2023
Web of ScienceTM
Citations
10
38
Updated on Feb 1, 2023
Page view(s) 50
472
Updated on Feb 7, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.