Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96247
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNarwaria, Manishen
dc.contributor.authorLin, Weisien
dc.contributor.authorLiu, Anminen
dc.date.accessioned2013-07-15T08:59:44Zen
dc.date.accessioned2019-12-06T19:27:48Z-
dc.date.available2013-07-15T08:59:44Zen
dc.date.available2019-12-06T19:27:48Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationNarwaria, M., Lin, W., & Liu, A. (2012). Low-Complexity Video Quality Assessment Using Temporal Quality Variations. IEEE Transactions on Multimedia, 14(3), 525-535.en
dc.identifier.issn1520-9210en
dc.identifier.urihttps://hdl.handle.net/10356/96247-
dc.identifier.urihttp://hdl.handle.net/10220/11474en
dc.description.abstractObjective video quality assessment (VQA) is the use of computational models to evaluate the video quality in line with the perception of the human visual system (HVS). It is challenging due to the underlying complexity, and the relatively limited understanding of the HVS and its intricate mechanisms. There are three important issues that arise in objective VQA in comparison with image quality assessment: 1) the temporal factors apart from the spatial ones also need to be considered, 2) the contribution of each factor (spatial and temporal) and their interaction to the overall video quality need to be determined, and 3) the computational complexity of the resultant method. In this paper, we seek to tackle the first issue by utilizing the worst case pooling strategy and the variations of spatial quality along the temporal axis with proper analysis and justification. The second issue is addressed by the use of machine learning; we believe this to be more convincing since the relationship between the factors and the overall quality is derived via training with substantial ground truth (i.e., subjective scores). Experiments conducted using publicly available video databases show the effectiveness of the proposed full-reference (FR) algorithm in comparison to the relevant existing VQA schemes. Focus has also been placed on demonstrating the robustness of the proposed method to new and untrained data. To that end, cross-database tests have been carried out to provide a proper perspective of the performance of proposed scheme as compared to other VQA methods. The third issue regarding the computational costs also plays a key role in determining the feasibility of a VQA scheme for practical deployment given the large amount of data that needs to be processed/analyzed in real time. A limitation of many existing VQA algorithms is their higher computational complexity. In contrast, the proposed scheme is more efficient due to its low complexity without jeopardizing the predict- on accuracy.en
dc.language.isoenen
dc.relation.ispartofseriesIEEE Transactions on Multimediaen
dc.rights© 2012 IEEE.en
dc.subjectDRNTU::Engineering::Computer science and engineeringen
dc.titleLow-complexity video quality assessment using temporal quality variationsen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Engineeringen
dc.identifier.doihttp://dx.doi.org/10.1109/TMM.2012.2190589en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.