Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96331
Title: Study of strain effect on in-plane polarization in epitaxial BiFeO3 thin films using planar electrodes
Authors: You, Lu
Chen, Zuhuang
Zou, Xi
Ren, Wei
Huang, Chuanwei
Yang, Yurong
Yang, Ping
Wang, Junling
Sritharan, Thirumany
Chen, Lang
Bellaiche, L.
Issue Date: 2012
Source: Chen, Z., Zou, X., Ren, W., You, L., Huang, C., Yang, Y., et al. (2012). Study of strain effect on in-plane polarization in epitaxial BiFeO3 thin films using planar electrodes. Physical Review B, 86(23), 235125-.
Series/Report no.: Physical review B
Abstract: Epitaxial strain plays an important role in determining physical properties of perovskite ferroelectric oxide thin films because of the inherent coupling between the strain and the polarization. However, it is very challenging to directly measure properties such as polarization in ultrathin strained films, using traditional sandwich capacitor devices, because of high leakage current. Hence, a planar electrode device with different crystallographical orientations between electrodes, which is able to measure the polarization response with different electric field orientation, is used successfully in this work to directly measure the in-plane polarization–electric-field (P-E) hysteresis loops in fully strained thin films. We used BiFeO3 (BFO) as a model system and measured in-plane P-E loops not only in the rhombohedral-like (R-like) BFO thin films but also in largely strained BFO films exhibiting the pure tetragonal-like (T-like) phase. The exact magnitude and direction of the spontaneous polarization vector of the T-like phase is deduced thanks to the collection of in-plane polarization components along different orientations. It is also shown that the polarization vector in the R-like phase of BiFeO3 is constrained to lie within the (11̅ 0) plane and rotates from the [111] towards the [001] pseudocubic direction when the compressive strain is increased from zero. At high misfit strains such as −4.4%, the pure T-like phase is obtained and its polarization vector is constrained to lie in the (010) plane with a significantly large in-plane component, ∼44 μC/cm2. First-principles calculations are carried out in parallel, and provide a good agreement with the experimental results.
URI: https://hdl.handle.net/10356/96331
http://hdl.handle.net/10220/10230
ISSN: 1098-0121
DOI: 10.1103/PhysRevB.86.235125
Rights: © 2012 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1103/PhysRevB.86.235125].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
74. Study of strain effect.pdf1.8 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.