Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/96395
Title: | Extracting causal relations on HIV drug resistance from literature | Authors: | Bui, Quoc-Chinh Nuallain, Breanndan O. Boucher, Charles A. B. Sloot, Peter M. A. |
Keywords: | DRNTU::Engineering::Computer science and engineering | Issue Date: | 2010 | Source: | Bui, Q. C., Nuallain, B. O., Boucher, C. A., & Sloot, P. M. (2010). Extracting causal relations on HIV drug resistance from literature. BMC Bioinformatics, 11(1), 101. | Series/Report no.: | BMC bioinformatics | Abstract: | In HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and medical doctors. Therefore there is an urgent need for a tool that partially automates this process and is able to retrieve relations between drugs and virus mutations from literature. Results In this work we present a novel method to extract and combine relationships between HIV drugs and mutations in viral genomes. Our extraction method is based on natural language processing (NLP) which produces grammatical relations and applies a set of rules to these relations. We applied our method to a relevant set of PubMed abstracts and obtained 2,434 extracted relations with an estimated performance of 84% for F-score. We then combined the extracted relations using logistic regression to generate resistance values for each <drug, mutation> pair. The results of this relation combination show more than 85% agreement with the Stanford HIVDB for the ten most frequently occurring mutations. The system is used in 5 hospitals from the Virolab project http://www.virolab.org webcite to preselect the most relevant novel resistance data from literature and present those to virologists and medical doctors for further evaluation. Conclusions The proposed relation extraction and combination method has a good performance on extracting HIV drug resistance data. It can be used in large-scale relation extraction experiments. The developed methods can also be applied to extract other type of relations such as gene-protein, gene-disease, and disease-mutation. | URI: | https://hdl.handle.net/10356/96395 http://hdl.handle.net/10220/9899 |
ISSN: | 1471-2105 | DOI: | 10.1186/1471-2105-11-101 | Schools: | School of Computer Engineering | Rights: | © 2010 Bui et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
46. Extracting causal relations on HIV drug resistance from literature.pdf | 369.89 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
43
Updated on Mar 9, 2025
Web of ScienceTM
Citations
10
27
Updated on Oct 30, 2023
Page view(s) 20
755
Updated on Mar 15, 2025
Download(s) 10
379
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.