Please use this identifier to cite or link to this item:
Title: Fluorophore-doped core–multishell spherical plasmonic nanocavities : resonant energy transfer toward a loss compensation
Authors: Peng, Bo
Zhang, Qing
Liu, Xinfeng
Ji, Yun
Demir, Hilmi Volkan
Huan, Alfred Cheng Hon
Sum, Tze Chien
Xiong, Qihua
Issue Date: 2012
Source: Peng, B., Zhang, Q., Liu, X., Ji, Y., Demir, H. V., Huan, C. H. A., et al. (2012). Fluorophore-Doped Core–Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano, 6(7), 6250-6259.
Series/Report no.: ACS nano
Abstract: Plasmonics exhibits the potential to break the diffraction limit and bridge the gap between electronics and photonics by routing and manipulating light at the nanoscale. However, the inherent and strong energy dissipation present in metals, especially in the near-infrared and visible wavelength ranges, significantly hampers the applications in nanophotonics. Therefore, it is a major challenge to mitigate the losses. One way to compensate the losses is to incorporate gain media into plasmonics. Here, we experimentally show that the incorporation of gain material into a local surface plasmonic system (Au/silica/silica dye core–multishell nanoparticles) leads to a resonant energy transfer from the gain media to the plasmon. The optimized conditions for the largest loss compensation are reported. Both the coupling distance and the spectral overlap are the key factors to determine the resulting energy transfer. The interplay of these factors leads to a non-monotonous photoluminescence dependence as a function of the silica spacer shell thickness. Nonradiative transfer rate is increased by more than 3 orders of magnitude at the resonant condition, which is key evidence of the strongest coupling occurring between the plasmon and the gain material.
ISSN: 1936-0851
DOI: 10.1021/nn301716q
Rights: © 2012 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles
SPMS Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.