Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96519
Title: High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2
Authors: Gao, Hongcai
Xiao, Fei
Ching, Chi Bun
Duan, Hongwei
Issue Date: 2012
Source: Gao, H., Xiao, F., Ching, C. B., & Duan, H. (2012). High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2. ACS Applied Materials & Interfaces, 4(5), 2801-2810.
Series/Report no.: ACS applied materials & interfaces
Abstract: We have successfully fabricated an asymmetric supercapacitor with high energy and power densities using graphene hydrogel (GH) with 3D interconnected pores as the negative electrode and vertically aligned MnO2 nanoplates on nickel foam (MnO2-NF) as the positive electrode in a neutral aqueous Na2SO4 electrolyte. Because of the desirable porous structure, high specific capacitance and rate capability of GH and MnO2-NF, complementary potential window of the two electrodes, and the elimination of polymer binders and conducting additives, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0–2.0 V and exhibits an energy density of 23.2 Wh kg–1 with a power density of 1.0 kW kg–1. Energy density of the asymmetric supercapacitor is significantly improved in comparison with those of symmetric supercapacitors based on GH (5.5 Wh kg–1) and MnO2-NF (6.7 Wh kg–1). Even at a high power density of 10.0 kW kg–1, the asymmetric supercapacitor can deliver a high energy density of 14.9 Wh kg–1. The asymmetric supercapacitor also presents stable cycling performance with 83.4% capacitance retention after 5000 cycles.
URI: https://hdl.handle.net/10356/96519
http://hdl.handle.net/10220/10270
ISSN: 1944-8244
DOI: 10.1021/am300455d
Rights: © 2012 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.