Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96558
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Zhensheng.en
dc.contributor.authorPang, Zhen.en
dc.contributor.authorZhang, Riquan.en
dc.date.accessioned2013-12-05T03:25:13Zen
dc.date.accessioned2019-12-06T19:32:30Z-
dc.date.available2013-12-05T03:25:13Zen
dc.date.available2019-12-06T19:32:30Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationHuang, Z., Pang, Z., & Zhang, R. (2013). Adaptive profile-empirical-likelihood inferences for generalized single-index models. Computational statistics & data analysis, 62, 70-82.en
dc.identifier.issn0167-9473en
dc.identifier.urihttps://hdl.handle.net/10356/96558-
dc.description.abstractWe study generalized single-index models and propose an efficient equation for estimating the index parameter and unknown link function, deriving a quasi-likelihood-based maximum empirical likelihood estimator (QLMELE) of the index parameter. We then establish an efficient confidence region for any components of the index parameter using an adaptive empirical likelihood method. A pointwise confidence interval for the unknown link function is also established using the QLMELE. Compared with the normal approximation proposed by Cui et al. [Ann Stat. 39 (2011) 1658], our approach is more attractive not only theoretically but also empirically. Simulation studies demonstrate that the proposed method provides smaller confidence intervals than those based on the normal approximation method subject to the same coverage probabilities. Hence, the proposed empirical likelihood is preferable to the normal approximation method because of the complicated covariance estimation. An application to a real data set is also illustrated.en
dc.language.isoenen
dc.relation.ispartofseriesComputational statistics & data analysisen
dc.subjectDRNTU::Science::Mathematics::Statisticsen
dc.titleAdaptive profile-empirical-likelihood inferences for generalized single-index modelsen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1016/j.csda.2012.12.006en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 1

4
checked on Aug 31, 2020

WEB OF SCIENCETM
Citations 50

3
checked on Sep 24, 2020

Page view(s) 50

232
checked on Sep 24, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.