Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/96601
Title: | QM/MM modeling of environmental effects on electronic transitions of the FMO complex | Authors: | Gao, Junkuo Shi, Wu-Jun Ye, Jun Wang, Xiaoqing Hirao, Hajime Zhao, Yang |
Keywords: | DRNTU::Science::Chemistry::Biochemistry | Issue Date: | 2013 | Source: | Gao. J., Shi, W. J., Ye, J., Wang, X., Hirao, H., & Zhao, Y. (2013). QM/MM Modeling of Environmental Effects on Electronic Transitions of the FMO Complex. Journal of Physical Chemistry B, 117 (13), 3488–3495. | Series/Report no.: | Journal of physical chemistry B | Abstract: | The Fenna–Matthews–Oslon (FMO) light harvesting pigment–protein complex in green sulfur bacteria transfers the excitation energy from absorbed sunlight to the reaction center with almost 100% quantum efficiency. The protein-pigment coupling (part of the environmental effects) is believed to play an important role in determining excitation energy transfer pathways. To study the effect of environment on the electronic transitions in the FMO complex, especially by taking into account the newly discovered eighth extra pigment, we have employed hybrid quantum-mechanics/molecular-mechanics (QM/MM) methods in combination with molecular dynamics (MD) simulations. The averaged site energies of individual pigments are calculated using the semiempirical ZINDO/S-CIS method considering the protein residues as atomic point charges along the MD trajectories. The exciton energies are calculated from the site energies and excitonic couplings based on MD simulations. The new eighth pigment displays the largest site energy and contributes mainly to the highest exciton level, which may facilitate transfer of excitation energies from the baseplate to the reaction center. Further, the multimode Brownian oscillator (MBO) model is used to fit the linear absorption spectra of the FMO complex, validating the exciton energies obtained from the QM/MM calculations. Our results indicate that the QM/MM method combined with MD simulations is a powerful tool to model the environmental effects on electronic transitions of light harvesting antenna complexes. | URI: | https://hdl.handle.net/10356/96601 http://hdl.handle.net/10220/9953 |
DOI: | 10.1021/jp3109418 | Schools: | School of Materials Science & Engineering School of Physical and Mathematical Sciences |
Rights: | © 2013 American Chemical Society. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles SPMS Journal Articles |
SCOPUSTM
Citations
10
56
Updated on May 2, 2025
Web of ScienceTM
Citations
5
51
Updated on Oct 29, 2023
Page view(s) 5
1,237
Updated on May 5, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.