Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96687
Title: Biomass oxidation : formyl C-H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves
Authors: Trinh, Quang Thang
Wang, Bo
Borgna, Armando
Yang, Yanhui
Amaniampong, Prince Nana
Mushrif, Samir Hemant
Keywords: DRNTU::Science::Chemistry::Physical chemistry::Catalysis
DRNTU::Science::Chemistry::Organic chemistry::Oxidation
Issue Date: 2015
Source: Amaniampong, P. N., Trinh, Q. T., Wang, B., Borgna, A., Yang, Y., & Mushrif, S. H. (2015). Biomass oxidation : formyl C-H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angewandte Chemie International Edition, 54(31), 8928-8933.
Series/Report no.: Angewandte Chemie International Edition
Abstract: An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.
URI: https://hdl.handle.net/10356/96687
http://hdl.handle.net/10220/38507
ISSN: 1433-7851
DOI: 10.1002/anie.201503916
Rights: © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.