Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96813
Title: Functional divergence of FimX in PilZ binding and Type IV pilus regulation
Authors: Qi, Yaning
Xu, Linghui
Dong, Xueming
Yau, Yin Hoe
Ho, Chun Loong
Koh, Siew Lee
Shochat, Susana Geifman
Chou, Shan-Ho
Tang, Kai
Liang, Zhao-Xun
Keywords: DRNTU::Science::Biological sciences
Issue Date: 2012
Source: Qi, Y., Xu, L., Dong, X., Yau, Y. H., Ho, C. L., Koh, S. L., et al. (2012). Functional Divergence of FimX in PilZ Binding and Type IV Pilus Regulation. Journal of Bacteriology, 194(21), 5922-5931.
Series/Report no.: Journal of bacteriology
Abstract: Type IV pili (T4P) are polar surface structures that play important roles in bacterial motility, biofilm formation, and pathogenicity. The protein FimX and its orthologs are known to mediate T4P formation in the human pathogen Pseudomonas aeruginosa and some other bacterial species. It was reported recently that FimXXAC2398 from Xanthomonas axonopodis pv. citri interacts with PilZXAC1133 directly through the nonenzymatic EAL domain of FimXXAC2398. Here we present experimental data to reveal that the strong interaction between FimXXAC2398 and PilZXAC1133 is not conserved in P. aeruginosa and likely other Pseudomonas species. In vitro and in vivo binding experiments showed that the interaction between FimX and PilZ in P. aeruginosa is below the measurable limit. Surface plasmon resonance assays further confirmed that the interaction between the P. aeruginosa proteins is at least more than 3 orders of magnitude weaker than that between the X. axonopodis pv. citri pair. The N-terminal lobe region of FimXXAC2398 was identified as the binding surface for PilZXAC1133 by amide hydrogen-deuterium exchange and site-directed mutagenesis studies. Lack of several key residues in the N-terminal lobe region of the EAL domain of FimX is likely to account for the greatly reduced binding affinity between FimX and PilZ in P. aeruginosa. All together, the results suggest that the interaction between PilZ and FimX in Xanthomonas species is not conserved in P. aeruginosa due to the evolutionary divergence among the FimX orthologs. The precise roles of FimX and PilZ in bacterial motility and T4P biogenesis are likely to vary among bacterial species.
URI: https://hdl.handle.net/10356/96813
http://hdl.handle.net/10220/11648
ISSN: 0021-9193
DOI: 10.1128/JB.00767-12
Schools: School of Biological Sciences 
Rights: © 2012 American Society for Microbiology.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SBS Journal Articles

SCOPUSTM   
Citations 20

19
Updated on Mar 25, 2024

Web of ScienceTM
Citations 20

20
Updated on Oct 26, 2023

Page view(s) 10

815
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.