Please use this identifier to cite or link to this item:
Title: Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts
Authors: Zhang, Wei
Xu, Rong
Issue Date: 2012
Source: Zhang, W., & Xu, R. (2012). Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts. International Journal of Hydrogen Energy, 37(23), 17899-17909.
Series/Report no.: International journal of hydrogen energy
Abstract: The application of nickel based earth abundant inorganic solids as catalysts in xanthene dye sensitized systems was evaluated for photocatalytic H2 production from water. The introduction of heterogeneous nanoparticles into molecular systems as catalysts is the conceptual begin to broaden the construction of photocatalytic H2 production systems. A series of Ni based inorganic nanoparticles, including Ni metal, NiO, NiS and NiSe, are capable of producing H2 from triethanolamine sacrificial aqueous solution when photosensitized by xanthene dyes. NiS catalysts synthesized from different methods were also evaluated for H2 production performance. The best H2 production result is obtained with the use of Erythrosin Y as the photosensitizer and NiS synthesized in ethylene glycol as the catalyst. This system is active even under photons with wavelengths longer than 520 nm with a H2 production of 2.5 mmol within 26 h of irradiation from a 300 W Xenon lamp. Meanwhile, it can generate over 4.2 mmol of H2 within 16 h of irradiation with a 440 nm long-pass cut-off filter. Within the visible light range we examined, the highest quantum efficiency is around 15% at 520 nm. The high activity of NiS could be contributed by its high electrochemical activity, metallic nature, unsaturated Ni environment and suitable Fermi energy level. These hybrid systems consist of earth abundant elements, and the catalyst is photostable and recyclable compared to homogeneous metal complex catalyst.
ISSN: 0360-3199
DOI: 10.1016/j.ijhydene.2012.08.150
Rights: © 2012 Hydrogen Energy Publications, LLC.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Citations 5

Updated on Mar 6, 2021

Citations 5

Updated on Mar 7, 2021

Page view(s) 5

Updated on Jan 17, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.