Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/97032
Title: Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells
Authors: Chen, Tao
Hu, Weihua
Song, Junling
Guai, Guan Hong
Li, Chang Ming
Issue Date: 2012
Source: Chen, T., Hu, W., Song, J., Guai, G. H., & Li, C. M. (2012). Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye-Sensitized Solar Cells. Advanced Functional Materials, 22(24), 5245-5250.
Series/Report no.: Advanced functional materials
Abstract: The microstructures of photo- and counter-electrodes play critical roles in the performance of dye-sensitized solar cells (DSSCs). In particular, various interfaces, such as fluorinated-tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte, in DSSCs significantly affect the final power conversion efficiency (PCE). However, research has generally focused more on the design of various nanostructured semiconducting materials with emphasis on optimizing chemical or/and physical properties, and less on these interface functionalizations for performance improvement. This work explores a new application of graphene to modify the interface of FTO/TiO2 to suppress charge recombination. In combination with interfaces functionalization of TiO2/TiO2 for low charge-transport resistance and high charge-transfer rate, the final PCE of DSSC is remarkably improved from 5.80% to 8.13%, achieving the highest efficiency in comparison to reported graphene/TiO2-based DSSCs. The method of using graphene to functionalize the surface of FTO substrate provides a better alternative method to the conventional pre-treatment through hydrolyzing TiCl4 and an approach to reduce the adverse effect of microstructural defect of conducting glass substrate for electronic devices.
URI: https://hdl.handle.net/10356/97032
http://hdl.handle.net/10220/10422
ISSN: 1616-3028
DOI: 10.1002/adfm.201201126
Rights: © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations 50

116
Updated on Mar 6, 2021

PublonsTM
Citations 50

110
Updated on Feb 27, 2021

Page view(s) 20

490
Updated on Mar 6, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.