Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/97076
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPang, Zhen.en
dc.contributor.authorXue, Liugen.en
dc.date.accessioned2013-08-15T06:36:27Zen
dc.date.accessioned2019-12-06T19:38:43Z-
dc.date.available2013-08-15T06:36:27Zen
dc.date.available2019-12-06T19:38:43Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationPang, Z.,& Xue, L. (2012). Estimation for the single-index models with random effects. Computational Statistics & Data Analysis, 56(6), 1837-1853.en
dc.identifier.urihttps://hdl.handle.net/10356/97076-
dc.description.abstractIn this paper, we generalize the single-index models to the scenarios with random effects. The introduction of the random effects raises interesting inferential challenges. Instead of treating the variance matrix as the tuning parameters in the nonparametric model of Gu and Ma (2005), we propose root-n consistent estimators for the variance components. Furthermore, the single-index part in our model avoids the curse of dimensionality and makes our model simpler. The variance components also cannot be treated as nuisance parameters and are canceled in the estimation procedure like Wang et al. (2010). A new set of estimating equations modified for the boundary effects is proposed to estimate the index coefficients. The link function is estimated by using the local linear smoother. Asymptotic normality is established for the proposed estimators. Also, the estimator of the link function achieves optimal convergence rate. These results facilitate the construction of confidence regions and hypothesis testing for the parameters of interest. Simulations show that our methods work well for high-dimensional p.en
dc.language.isoenen
dc.relation.ispartofseriesComputational statistics & data analysisen
dc.titleEstimation for the single-index models with random effectsen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1016/j.csda.2011.11.007en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 20

21
Updated on Apr 15, 2025

Web of ScienceTM
Citations 20

16
Updated on Oct 25, 2023

Page view(s) 50

546
Updated on Apr 24, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.