Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/97140
Title: | Receding horizon cache and extreme learning machine based reinforcement learning | Authors: | Shao, Zhifei Er, Meng Joo Huang, Guang-Bin |
Keywords: | DRNTU::Engineering::Electrical and electronic engineering | Issue Date: | 2012 | Source: | Shao, Z., Er, M. J., & Huang, G.-B. (2012). Receding Horizon Cache and Extreme Learning Machine Based Reinforcement Learning. 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 1591-1596. | Conference: | International Conference on Control Automation Robotics & Vision (12th : 2012 : Guangzhou, China) | Abstract: | Function approximators have been extensively used in Reinforcement Learning (RL) to deal with large or continuous space problems. However, batch learning Neural Networks (NN), one of the most common approximators, has been rarely applied to RL. In this paper, possible reasons for this are laid out and a solution is proposed. Specifically, a Receding Horizon Cache (RHC) structure is designed to collect training data for NN by dynamically archiving state-action pairs and actively updating their Q-values, which makes batch learning NN much easier to implement. Together with Extreme Learning Machine (ELM), a new RL with function approximation algorithm termed as RHC and ELM based RL (RHC-ELM-RL) is proposed. A mountain car task was carried out to test RHC-ELM-RL and compare its performance with other algorithms. | URI: | https://hdl.handle.net/10356/97140 http://hdl.handle.net/10220/11704 |
DOI: | 10.1109/ICARCV.2012.6485384 | Schools: | School of Electrical and Electronic Engineering | Rights: | © 2012 IEEE. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | EEE Conference Papers |
SCOPUSTM
Citations
50
3
Updated on Mar 25, 2025
Page view(s) 20
819
Updated on Mar 24, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.