Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShao, Zhifeien
dc.contributor.authorEr, Meng Jooen
dc.contributor.authorHuang, Guang-Binen
dc.identifier.citationShao, Z., Er, M. J., & Huang, G.-B. (2012). Receding Horizon Cache and Extreme Learning Machine Based Reinforcement Learning. 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 1591-1596.en
dc.description.abstractFunction approximators have been extensively used in Reinforcement Learning (RL) to deal with large or continuous space problems. However, batch learning Neural Networks (NN), one of the most common approximators, has been rarely applied to RL. In this paper, possible reasons for this are laid out and a solution is proposed. Specifically, a Receding Horizon Cache (RHC) structure is designed to collect training data for NN by dynamically archiving state-action pairs and actively updating their Q-values, which makes batch learning NN much easier to implement. Together with Extreme Learning Machine (ELM), a new RL with function approximation algorithm termed as RHC and ELM based RL (RHC-ELM-RL) is proposed. A mountain car task was carried out to test RHC-ELM-RL and compare its performance with other algorithms.en
dc.rights© 2012 IEEE.en
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen
dc.titleReceding horizon cache and extreme learning machine based reinforcement learningen
dc.typeConference Paperen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen
dc.contributor.conferenceInternational Conference on Control Automation Robotics & Vision (12th : 2012 : Guangzhou, China)en
item.fulltextNo Fulltext-
Appears in Collections:EEE Conference Papers

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.