Please use this identifier to cite or link to this item:
Title: Groups and information inequalities in 5 variables
Authors: Markin, Nadya
Thomas, Eldho
Oggier, Frederique
Keywords: DRNTU::Science::Mathematics::Algebra
Issue Date: 2013
Source: Markin, N., Thomas, E., & Oggier, F. (2013). Groups and information inequalities in 5 variables. 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), 804 - 809.
Abstract: Linear rank inequalities in 4 subspaces are characterized by Shannon-type inequalities and the Ingleton inequality in 4 random variables. Examples of random variables violating these inequalities have been found using finite groups, and are of interest for their applications in nonlinear network coding [1]. In particular, it is known that the symmetric group S5 provides the first instance of a group, which gives rise to random variables that violate the Ingleton inequality. In the present paper, we use group theoretic methods to construct random variables which violate linear rank inequalities in 5 random variables. In this case, linear rank inequalities are fully characterized [8] using Shannon-type inequalities together with 4 Ingleton inequalities and 24 additional new inequalities. We show that finite groups which do not produce violators of the Ingleton inequality in 4 random variables will also not violate the Ingleton inequalities for 5 random variables. We then focus on 2 of the 24 additional inequalities in 5 random variables and formulate conditions for finite groups which help us eliminate those groups that obey the 2 inequalities. In particular, we show that groups of order pq, where p; q are prime, always satisfy them, and exhibit the first violator, which is the symmetric group S4.
DOI: 10.1109/Allerton.2013.6736607
Rights: © 2013 IEEE. This is the author created version of a work that has been peer reviewed and accepted for publication by 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Conference Papers

Files in This Item:
File Description SizeFormat 
ing5_22.pdf178.03 kBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.