Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/97370
Title: Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency
Authors: Zhou, Zhaofeng
Sun, Changqing
Yang, C.
Li, J. W.
Yang, X. X.
Qin, W.
Jiang, R.
Guo, N. G.
Wang, Y.
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2012
Source: Yang, C., Zhou, Z. F., Li, J. W., Yang, X. X., Qin, W., Jiang, R., et al. (2012). Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency. Nanoscale, 4(4), 1304-1307.
Series/Report no.: Nanoscale
Abstract: With structural miniaturization down to the nanoscale, the detectable quantities of solid materials no longer remain constant but become tunable. For the II–VI semiconductors example, the band gap expands, the elastic modulus increases, the melting point drops, and the Raman optical phonons experience red shift associated with creation of low frequency Raman acoustic modes that undergo blue shift with decreasing the dimensional scale. In order to understand the common origin of the size dependency of these seemingly irrelevant properties, we formulated these quantities for CdS, ZnS, and CdSe semiconductors from the perspectives of bond order–length–strength correlation and the local bond averaging approach. Consistency between the theory predictions and the measured size dependence of these quantities clarified that the undercoordination-induced local strain and quantum entrapment and the varied fraction of undercoordinated atoms of the entire solid correlate these quantities and dominate their size effect.
URI: https://hdl.handle.net/10356/97370
http://hdl.handle.net/10220/10745
ISSN: 2040-3364
DOI: 10.1039/c2nr11605g
Rights: © 2012 The Royal Society of Chemistry.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 10

39
Updated on Jan 16, 2023

Web of ScienceTM
Citations 10

37
Updated on Jan 27, 2023

Page view(s) 10

739
Updated on Jan 29, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.