Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/97578
Title: Gas-phase reactivity of group 11 dimethylmetallates with allyl iodide
Authors: Rijs, Nicole J.
Yoshikai, Naohiko
Nakamura, Eiichi
O’Hair, Richard A. J.
Issue Date: 2012
Source: Rijs, N. J., Yoshikai, N., Nakamura, E., & O’Hair, R. A. J. (2012). Gas-Phase Reactivity of Group 11 Dimethylmetallates with Allyl Iodide. Journal of the American Chemical Society, 134(5), 2569-2580.
Series/Report no.: Journal of the American chemical society
Abstract: Copper-mediated allylic substitution reactions are widely used in organic synthesis, whereas the analogous reactions for silver and gold are essentially unknown. To unravel why this is the case, the gas-phase reactions of allyl iodide with the coinage metal dimethylmetallates, [CH3MCH3]− (M = Cu, Ag and Au), were examined under the near thermal conditions of an ion trap mass spectrometer and via electronic structure calculations. [CH3CuCH3]− reacted with allyl iodide with a reaction efficiency of 6.6% of the collision rate to yield: I– (75%); the cross-coupling product, [CH3CuI]− (24%); and the homo-coupling product, [C3H5CuI]− (1%). [CH3AgCH3]− and [CH3AuCH3]− reacted substantially slower (reaction efficiencies of 0.028% and 0.072%). [CH3AgCH3]− forms I– (19%) and [CH3AgI]− (81%), while only I– is formed from [CH3AuCH3]−. Because the experiments do not detect the neutral product(s) formed, which might otherwise help identify the mechanisms of reaction, and to rationalize the observed ionic products and reactivity order, calculations at the B3LYP/def2-QZVP//B3LYP/SDD6-31+G(d) level were conducted on four different mechanisms: (i) SN2; (ii) SN2′; (iii) oxidative-addition/reductive elimination (OA/RE) via an M(III) η3-allyl intermediate; and (iv) OA/RE via an M(III) η1-allyl intermediate. For copper, mechanisms (iii) and (iv) are predicted to be competitive. Only the Cu(III) η3-allyl intermediate undergoes reductive elimination via two different transition states to yield either the cross-coupling or the homo-coupling products. Their relative barriers are consistent with homo-coupling being a minor pathway. For silver, the kinetically most probable pathway is the SN2 reaction, consistent with no homo-coupling product, [C3H5AgI]−, being observed. For gold, no C–C coupling reaction is kinetically viable. Instead, I– is predicted to be formed along with a stable Au(III) η3-allyl complex. These results clearly highlight the superiority of organocuprates in allylic substitution reactions.
URI: https://hdl.handle.net/10356/97578
http://hdl.handle.net/10220/11262
DOI: 10.1021/ja2069032
Schools: School of Physical and Mathematical Sciences 
Rights: © 2012 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 10

49
Updated on Mar 15, 2025

Web of ScienceTM
Citations 10

47
Updated on Oct 27, 2023

Page view(s) 20

777
Updated on Mar 21, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.