Please use this identifier to cite or link to this item:
Title: Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures
Authors: Sun, Hang
Shen, Xiaoshuang
Yao, Lin
Xing, Shuangxi
Wang, Hong
Feng, Yuhua
Chen, Hongyu
Issue Date: 2012
Source: Sun, H., Shen, X., Yao, L., Xing, S., Wang, H., Feng, Y., et al. (2012). Measuring the Unusually Slow Ionic Diffusion in Polyaniline via Study of Yolk-Shell Nanostructures. Journal of the American Chemical Society, 134(27), 11243-11250.
Series/Report no.: Journal of the American chemical society
Abstract: We demonstrate a unique capability in partially oxidizing the oligoaniline shell on gold nanoparticles to polyaniline. Because of the solubility difference, the unreacted inner shell section can be selectively dissolved by 2-propanol, giving yolk-shell nanostructures and, thus, making it possible for assessing the oxidized section. The ionic diffusion through the polymer shell is found to be the rate-determining step in the overall process. Conservative estimates show that the diffusion coefficient of AuCl4– is at least 700 times slower than that of the typical rate values in traditional studies. It is most likely caused by the lack of micropores in the polymer structures. Such mircopores are hard to avoid in preparing polymer membranes by casting or drying of polymers dissolved in organic solvents. We can rule out the presence of irregular pores on the basis of the uniformly oxidized shell section. With the nanoscale shells, the system is sensitive enough to detect minute changes in the shell or small differences among the individual nanoparticles. Even with a small increase in porosity, for example, when the polyaniline shell is swollen using small amounts of DMF (3%, 5%, or 10% in aqueous solutions), the diffusion coefficient of AuCl4– increases to 4, 11, and 17 times, respectively. Thus, our study demonstrates a new methodology for studying the diffusion of ions in hydrophobic polymers.
DOI: 10.1021/ja3036674
Rights: © 2012 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Citations 10

Updated on Mar 6, 2021

Web of ScienceTM
Citations 10

Updated on Mar 7, 2021

Page view(s) 50

Updated on Sep 24, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.