Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/97925
Title: | A spectral feature based approach for face recognition with one training sample | Authors: | Sun, Zhan-Li Lam, Kin-Man Dong, Zhao-Yang Wang, Han |
Keywords: | DRNTU::Engineering::Electrical and electronic engineering | Issue Date: | 2012 | Source: | Sun, Z.-L., Lam, K.-M., Dong, Z.-Y.,& Wang, H. (2012). A spectral feature based approach for face recognition with one training sample. 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012). | Conference: | IEEE International Conference on Signal Processing, Communications and Computing (2012 : Hong Kong) | Abstract: | In this paper, a novel spectral feature image-based 2DLDA (two-dimensional linear discriminant analysis) ensemble algorithm is proposed for face recognition with one sample image per person. In our algorithm, multi-resolution spectral feature images are constructed to represent the face images. The proposed method is inspired by our finding that, among these spectral feature images, features extracted from some orientations and scales using 2DLDA are not sensitive to variations of illumination and expression. In order to maintain the positive characteristics of these filters and to make correct category assignments, the strategy of classifier committee learning (CCL) is designed to combine the results obtained from different spectral feature images. Experimental results on the standard databases demonstrate the feasibility and efficiency of the proposed method. | URI: | https://hdl.handle.net/10356/97925 http://hdl.handle.net/10220/12081 |
DOI: | 10.1109/ICSPCC.2012.6335726 | Schools: | School of Electrical and Electronic Engineering | Rights: | © 2012 IEEE. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | EEE Conference Papers |
SCOPUSTM
Citations
50
1
Updated on Mar 9, 2025
Page view(s) 20
730
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.