Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98060
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Haiwangen
dc.contributor.authorWong, Teck Nengen
dc.contributor.authorNguyen, Nam-Trungen
dc.date.accessioned2012-04-13T00:41:41Zen
dc.date.accessioned2019-12-06T19:50:10Z-
dc.date.available2012-04-13T00:41:41Zen
dc.date.available2019-12-06T19:50:10Z-
dc.date.copyright2011en
dc.date.issued2011en
dc.identifier.citationLi, H., Wong, T. N. & Nguyen, N. T. (2011). Semi-Analytical Model of Mixed Electroosmotic/Pressure Driven Two Immiscible Fluids with Curved Interface. Micro and Nanosystems, 3(4), 296-310.en
dc.identifier.issn1876-4029en
dc.identifier.urihttps://hdl.handle.net/10356/98060-
dc.description.abstractThis study is motivated by the need to develop a semi analytical model for predicting the stratified two-fluid flow with a curved interface in a rectangular microchannel under the combined effect of pressure and electroosmosis. With the non-slip boundary conditions at the wall and the matching condition at the curved interface, the fully developed Navier-Stokes equation and Poisson-Boltzmann equation are solved using separate variable method. Part of parameters in the distributions of velocity and electric potential is calculated using the least-square method. Details of the analytical treatment of the two-fluid flow with curved interface are presented. The results show that the analysis can be employed for concave, convex and planar interface. The validity of the two-fluid model with curved interface is evaluated by comparing its prediction with available numerical data and with the results of exact analytical solutions for laminar flows with planar interface, comparison of the electric potential distribution and velocity distributions shows excellent agreement with data in the literature. Finally, the effects of interface shape on the electric potential distribution, electroosmotic velocity distribution, and flow rates are discussed, the results show that the interface shape influences the two-fluid flow in microchannel significantly.en
dc.language.isoenen
dc.relation.ispartofseriesMicro and nanosystemsen
dc.rights© 2011 Bentham Science Publishers.en
dc.subjectDRNTU::Engineering::Mechanical engineeringen
dc.titleSemi-analytical model of mixed electroosmotic/pressure driven two immiscible fluids with curved interfaceen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen
dc.identifier.doi10.2174/1876402911103040296en
dc.identifier.rims163231en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MAE Journal Articles

Page view(s) 10

705
Updated on Dec 8, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.