Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98064
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Chun Xianen
dc.contributor.authorShen, Yiqiangen
dc.contributor.authorDong, Zhilien
dc.contributor.authorChen, Xiaodongen
dc.contributor.authorLou, David Xiong Wenen
dc.contributor.authorLi, Chang Mingen
dc.date.accessioned2013-08-29T08:56:16Zen
dc.date.accessioned2019-12-06T19:50:12Z-
dc.date.available2013-08-29T08:56:16Zen
dc.date.available2019-12-06T19:50:12Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationGuo, C. X., Shen, Y., Dong, Z. L., Chen, X. D., Lou, D. X. W., & Li, C. M. (2012). DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteries. Energy & environmental science, 5(5).en
dc.identifier.urihttps://hdl.handle.net/10356/98064-
dc.identifier.urihttp://hdl.handle.net/10220/13283en
dc.description.abstractThrough the PO4 3 groups regularly arranged on its sugar-phosphate backbone, DNA is used to direct the growth of a network structure of ultrasmall FePO4 nanoparticles on double-wall carbon nanotubes. The resulting structure has achieved nearly 100% theoretical storage capacity for the FePO4 active component as a cathode in lithium-ion batteries.en
dc.language.isoenen
dc.relation.ispartofseriesEnergy & environmental scienceen
dc.titleDNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteriesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen
dc.contributor.schoolSchool of Materials Science and Engineeringen
dc.identifier.doihttp://dx.doi.org/10.1039/c2ee21320fen
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.