Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98167
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, Liuen
dc.contributor.authorDhupia, Jaspreet Singhen
dc.date.accessioned2013-12-04T04:40:35Zen
dc.date.accessioned2019-12-06T19:51:42Z-
dc.date.available2013-12-04T04:40:35Zen
dc.date.available2019-12-06T19:51:42Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationHong, L., & Dhupia, J. S. (2013). A time-domain fault detection method based on an electrical machine stator current measurement for planetary gear-sets. 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1631 - 1636.en
dc.identifier.urihttps://hdl.handle.net/10356/98167-
dc.description.abstractFault diagnosis of geared drive-train systems is usually based on vibration monitoring. However, such vibration based techniques are difficult to implement in planetary gearboxes due to the complex nature of measured vibration spectrum. Motor current signal analysis (MCSA) provides an alternative and non-intrusive way to detect mechanical faults through electrical signatures. In this paper, a new time-domain fault detection algorithm is presented for the detection of planetary gear faults using electrical machine stator current signals. This time-domain fault detection method combines fast dynamic time warping (DTW) and correlated kurtosis techniques to process the current signals data to detect and identify damaged planetary gear and its position. Fast DTW is employed to highlight the sideband patterns resulting from tooth damage by the introduction of an estimated reference signal that has the same frequency as the gear mesh frequency. Correlated kurtosis (CK) takes advantages of the periodicity of the geared faults; it is used to identify the position of the damaged gear tooth in the planetary gear-set. This method is later applied to simulated current signals generated from a lumped parameter model of planetary gearbox driving a permanent magnet synchronous generator to evaluate its performance. The simulated results demonstrate the effectiveness of the proposed time-domain approach to detect faults in planetary gear-sets based on the electrical stator current signal.en
dc.language.isoenen
dc.subjectDRNTU::Engineering::Mechanical engineeringen
dc.titleA time-domain fault detection method based on an electrical machine stator current measurement for planetary gear-setsen
dc.typeConference Paperen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen
dc.contributor.conferenceInternational Conference on Advanced Intelligent Mechatronics (2013 : Wollongong, Australia)en
dc.identifier.doi10.1109/AIM.2013.6584330en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:MAE Conference Papers

SCOPUSTM   
Citations 20

31
Updated on Apr 19, 2025

Web of ScienceTM
Citations 20

20
Updated on Oct 28, 2023

Page view(s) 50

734
Updated on Apr 21, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.