Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Huien
dc.contributor.authorSun, Aixinen
dc.contributor.authorCui, Jiangtaoen
dc.contributor.authorBhowmick, Sourav S.en
dc.identifier.citationLi, H., Bhowmick, S. S., Sun, A., & Cui, J. (2013). Affinity-driven blog cascade analysis and prediction. Data mining and knowledge discovery.en
dc.description.abstractInformation propagation within the blogosphere is of much importance in implementing policies, marketing research, launching new products, and other applications. In this paper, we take a microscopic view of the information propagation pattern in blogosphere by investigating blog cascade affinity. A blog cascade is a group of posts linked together discussing about the same topic, and cascade affinity refers to the phenomenon of a blog’s inclination to join a specific cascade. We identify and analyze an array of macroscopic and microscopic content-oblivious features that may affect a blogger’s cascade joining behavior and utilize these features to predict cascade affinity of blogs. Based on these features, we present two non-probabilistic and probabilistic strategies, namely support vector machine (SVM) classification-based approach and Bipartite Markov Random Field-based (BiMRF) approach, respectively, to predict the probability of blogs’ affinity to a cascade and rank them accordingly. Evaluated on a real dataset consisting of 873,496 posts, our experimental results demonstrate that our prediction strategy can generate high quality results ( F1 -measure of 72.5 % for SVM and 71.1 % for BiMRF) comparing with the approaches using traditional or singular features only such as elapsed time, number of participants which is around 11.2 and 8.9 %, respectively. Our experiments also showed that among all features identified, the number of quasi-friends is the most important factor affecting bloggers’ inclination to join cascades.en
dc.relation.ispartofseriesData mining and knowledge discoveryen
dc.subjectDRNTU::Engineering::Computer science and engineeringen
dc.titleAffinity-driven blog cascade analysis and predictionen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Engineeringen
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

Citations 20

Updated on Mar 6, 2021

Citations 20

Updated on Mar 3, 2021

Page view(s) 10

Updated on May 14, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.