Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Yuqianen
dc.contributor.authorXie, Lihuaen
dc.identifier.citationGuo, Y., & Xie, L. (2012). Quadratic stability of reset control systems with delays. 2012 10th World Congress on Intelligent Control and Automation (WCICA).en
dc.description.abstractThis paper investigates robust stability of reset control systems with both uncertainties and transmission delays. Firstly, a generalized Lyapunov-Krasovskii theorem is proven. Secondly, the technique of parameter-dependent full-rank right annihilator of matrices is used to deal with the uncertain reset time instants caused by output matrix uncertainties. Based on this, several necessary and sufficient conditions for dissipativeness of reset mappings are established. Finally, some delay-independent and a delay-dependent robust stability results are given in terms of linear matrix inequalities (LMIs) by using certain kind of Lyapunov-Krasovskii functionals. An illustrative example is also given to explain the proposed results.en
dc.rights© 2012 IEEE.en
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen
dc.titleQuadratic stability of reset control systems with delaysen
dc.typeConference Paperen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen
dc.contributor.conferenceWorld Congress on Intelligent Control and Automation (10th : 2012 : Beijing, China)en
item.fulltextNo Fulltext-
Appears in Collections:EEE Conference Papers

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.