Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98577
Title: Al2O3 interface engineering of germanium epitaxial layer grown directly on silicon
Authors: Fitzgerald, Eugene A.
Tan, Yew Heng
Yew, Kwang Sing
Lee, Kwang Hong
Chang, Yao-Jen
Chen, Kuan-Neng
Ang, Diing Shenp
Tan, Chuan Seng
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2013
Source: Tan, Y. H., Yew, K. S., Lee, K. H., Chang, Y.-J., Chen, K.-N., Ang, D. S., et al. (2013). Al2O3 interface engineering of germanium epitaxial layer grown directly on silicon. IEEE transactions on electron devices, 60(1), 56-62.
Series/Report no.: IEEE transactions on electron devices
Abstract: The quality of germanium (Ge) epitaxial film grown directly on silicon (Si) substrate is investigated based on the electrical properties of a metal-oxide-semiconductor capacitor (MOSCAP). Different thermal cycling temperatures are used in this study to investigate the effect of temperature on the Ge film quality. Prior to high-k dielectric deposition, various surface treatments are applied on the Ge film to determine the leakage current density using scanning tunneling microscopy. The interface trap density (Dit) and leakage current obtained from the C-V and I-V measurements on the MOSCAP, as well as the threading dislocation density (TDD), show a linear relationship with the thermal cycling temperature. It is found that the Ge epitaxial film that undergoes the highest thermal cycling temperature of 825°C and surface treatment in ultraviolet ozone, followed by germanium oxynitride (GeOxNy) formation, demonstrates the lowest leakage current of ~ 2.3×10^-8 A/cm2 (at -2 V), Dit ~ 3.5 × 10^11 cm-2/V, and TDD <; 10^7 cm^-2.
URI: https://hdl.handle.net/10356/98577
http://hdl.handle.net/10220/17265
DOI: 10.1109/TED.2012.2225149
Rights: © 2013 IEEE.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.