Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yi-Chungen
dc.contributor.authorLi, Helen Haien
dc.contributor.authorZhang, Weien
dc.contributor.authorPino, Robinson E.en
dc.date.accessioned2013-10-14T04:40:11Zen
dc.date.accessioned2019-12-06T19:58:32Z-
dc.date.available2013-10-14T04:40:11Zen
dc.date.available2019-12-06T19:58:32Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationChen, Y. C., Li, H. H., Zhang, W., & Pino, R. E. (2012). The 3-D stacking bipolar RRAM for high density. IEEE transactions on nanotechnology, 11(5), 948-956.en
dc.identifier.urihttps://hdl.handle.net/10356/98692-
dc.identifier.urihttp://hdl.handle.net/10220/16470en
dc.description.abstractFor its simple structure, high density, and good scalability, the resistive random access memory (RRAM) has emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a 3-D stacking structure further boosts its advantage in array density. Conventionally, multiple bipolar RRAM layers are piled up vertically separated with isolation material to prevent signal interference between the adjacent memory layers. The process of the isolation material increases the fabrication cost and brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3-D stacking structures built upon bipolar RRAM crossbars that eliminate the isolation layers. The bigroup operation scheme dedicated for the proposed designs to enable multilayer accesses while avoiding the overwriting induced by the cross-layer disturbance is also presented. Our simulation results show that the proposed designs can increase the capacity of a memory island to 8K-bits (i.e., eight layers of 32 × 32 crossbar arrays) while maintaining the sense margin in the worst case configuration greater than 20% of the maximal sensing voltage.en
dc.language.isoenen
dc.relation.ispartofseriesIEEE transactions on nanotechnologyen
dc.subjectDRNTU::Engineering::Computer science and engineeringen
dc.titleThe 3-D stacking bipolar RRAM for high densityen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Engineeringen
dc.identifier.doi10.1109/TNANO.2012.2208759en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.