Please use this identifier to cite or link to this item:
Title: Viroporin activity and membrane topology of classic swine fever virus p7 protein
Authors: Guo, Hui-Chen
Sun, Shi-Qi
Sun, De-Hui
Wei, Yan-Quan
Xu, Jin
Huang, Mei
Liu, Xiang-Tao
Liu, Zai-Xin
Luo, Jian-Xiong
Yin, Hong
Liu, Ding Xiang
Keywords: DRNTU::Science::Biological sciences
Issue Date: 2013
Source: Guo, H.-C., Sun, S.-Q., Sun, D.-H., Wei, Y.-Q., Xu, J., Huang, M., et al. (2013). Viroporin activity and membrane topology of classic swine fever virus p7 protein. The International Journal of Biochemistry & Cell Biology, 45(7), 1186-1194.
Series/Report no.: The international journal of biochemistry & cell biology
Abstract: Viroporins are a group of viral proteins that participate in viral replication cycles, including modification of membrane permeability and promotion of viral release. Although biological data have been accumulated on viroporion-like proteins of other viruses belonging to family Flaviviridae, the viroporin activity and membrane topology of p7 protein from classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, are largely unknown. In this study, sequence analysis of the primary structure of p7 polypeptide demonstrates that p7 contains two putative transmembrane regions connected by a short hydrophilic segment. Expression of p7 protein in Escherichia coli leads to the permeabilization of bacterial cells to small molecules. The p7 protein also enhances the permeability of mammalian cells, increasing the intracellular Ca2+ concentration and the permeability of cells to the translation inhibitor Hygromycin B. This protein is an integral membrane protein and can form homo-oligomers. It mainly localizes to the ER at the early stage of the expression and can be transferred to the plasma membrane at the late stage of the expression. Detergent permeabilization assays confirmed that the p7 protein is a 2-pass transmembrane protein and its N and C termini are exposed to the ER lumen. Deletion analysis showed that amino acid residues 41–63 may be essential for the viroporin activity of the protein. Our studies demonstrate that CSFV p7 possesses properties commonly associated with viroporins, which could be a potential target for the development of a therapeutic intervention for classic swine fever virus infection.
ISSN: 1357-2725
DOI: 10.1016/j.biocel.2013.03.021
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SBS Journal Articles

Citations 20

Updated on Sep 4, 2020

Citations 20

Updated on Mar 6, 2021

Page view(s) 10

Updated on Jul 26, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.