Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/98740
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ling, San | en |
dc.contributor.author | Shparlinski, Igor E. | en |
dc.contributor.author | Steinfeld, Ron | en |
dc.contributor.author | Wang, Huaxiong | en |
dc.date.accessioned | 2012-04-11T03:58:35Z | en |
dc.date.accessioned | 2019-12-06T19:59:06Z | - |
dc.date.available | 2012-04-11T03:58:35Z | en |
dc.date.available | 2019-12-06T19:59:06Z | - |
dc.date.copyright | 2011 | en |
dc.date.issued | 2011 | en |
dc.identifier.citation | Ling, S., Shparlinski, I.E., Steinfeld, R., & Wang, H. (2011). On the modular inversion hidden number problem. Journal of Symbolic Computation, 47(4), 358-367. | en |
dc.identifier.uri | https://hdl.handle.net/10356/98740 | - |
dc.description.abstract | We give a rigorous deterministic polynomial time algorithm for the modular inversion hidden number problem introduced by D. Boneh, S. Halevi and N. A. Howgrave-Graham in 2001. For our algorithm we need to be given about 2/3 of the bits of the output, which matches one of the heuristic algorithms of D. Boneh, S. Halevi and N. A. Howgrave-Graham and answers one of their open questions. However their more e cient algorithm that requires only 1/3 of the bits of the output still remains heuristic. | en |
dc.format.extent | 11 p. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Journal of symbolic computation | en |
dc.rights | © 2011 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Symbolic Computation, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org.ezlibproxy1.ntu.edu.sg/10.1016/j.jsc.2011.09.002 | en |
dc.subject | DRNTU::Science::Mathematics | en |
dc.title | On the modular inversion hidden number problem | en |
dc.type | Journal Article | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en |
dc.identifier.doi | 10.1016/j.jsc.2011.09.002 | en |
dc.description.version | Accepted version | en |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
On the Modular Inversion Hidden Number.PDF | 335.69 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
9
Updated on Mar 18, 2023
Web of ScienceTM
Citations
50
5
Updated on Mar 17, 2023
Page view(s) 10
789
Updated on Mar 19, 2023
Download(s) 20
274
Updated on Mar 19, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.