Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/99020
Title: | Removing label ambiguity in learning-based visual saliency estimation | Authors: | Li, Jia Xu, Dong Gao, Wen |
Keywords: | DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision | Issue Date: | 2011 | Source: | Li, J., Xu, D., & Gao, W. (2011). Removing label ambiguity in learning-based visual saliency estimation. IEEE transactions on image processing, 21(4), 1513-1525. | Series/Report no.: | IEEE transactions on image processing | Abstract: | Visual saliency is a useful clue to depict visually important image/video contents in many multimedia applications. In visual saliency estimation, a feasible solution is to learn a “feature-saliency” mapping model from the user data obtained by manually labeling activities or eye-tracking devices. However, label ambiguities may also arise due to the inaccurate and inadequate user data. To process the noisy training data, we propose a multi-instance learning to rank approach for visual saliency estimation. In our approach, the correlations between various image patches are incorporated into an ordinal regression framework. By iteratively refining a ranking model and relabeling the image patches with respect to their mutual correlations, the label ambiguities can be effectively removed from the training data. Consequently, visual saliency can be effectively estimated by the ranking model, which can pop out real targets and suppress real distractors. Extensive experiments on two public image data sets show that our approach outperforms 11 state-of-the-art methods remarkably in visual saliency estimation. | URI: | https://hdl.handle.net/10356/99020 http://hdl.handle.net/10220/13473 |
ISSN: | 1057-7149 | DOI: | 10.1109/TIP.2011.2179665 | Schools: | School of Computer Engineering | Rights: | © 2011 IEEE | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
20
25
Updated on Mar 14, 2025
Web of ScienceTM
Citations
20
20
Updated on Oct 28, 2023
Page view(s) 20
699
Updated on Mar 21, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.