Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99132
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Xiangen
dc.contributor.authorKumar, Palaniswamy Sureshen
dc.contributor.authorAravindan, Vanchiappanen
dc.contributor.authorLiu, Huihuien
dc.contributor.authorSundaramurthy, Jayaramanen
dc.contributor.authorMhaisalkar, Subodh Gautamen
dc.contributor.authorDuong, Hai Minhen
dc.contributor.authorRamakrishna, Seeramen
dc.contributor.authorMadhavi, Srinivasanen
dc.date.accessioned2013-10-31T07:24:36Zen
dc.date.accessioned2019-12-06T20:03:42Z-
dc.date.available2013-10-31T07:24:36Zen
dc.date.available2019-12-06T20:03:42Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationZhang, X., Suresh Kumar, P., Aravindan, V., Liu, H. H., Sundaramurthy, J., Mhaisalkar, S. G., et al. (2012). Electrospun TiO2–graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. The journal of physical chemistry C, 116(28), 14780-14788.en
dc.identifier.urihttps://hdl.handle.net/10356/99132-
dc.description.abstractWe report the synthesis and electrochemical performance of one-dimensional TiO2–graphene composite nanofibers (TiO2–G nanofibers) by a simple electrospinning technique for the first time. Structural and morphological properties were characterized by various techniques, such as X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and BET surface area analysis. Lithium insertion properties were evaluated by both galvanostatic and potentiostatic modes in half-cell configurations. Cyclic voltammetric study reveals the Li-insertion/extraction by a two-phase reaction mechanism that is supported by galvanostatic charge–discharge profiles. Li/TiO2–G half-cells showed an initial discharge capacity of 260 mA h g–1 at current density of 33 mA g–1. Further, Li/TiO2–G cell retained 84% of reversible capacity after 300 cycles at a current density of 150 mA g–1, which is 25% higher than bare TiO2 nanofibers under the same test conditions. The cell also exhibits promising high rate behavior with a discharge capacity of 71 mA h g–1 at a current density of 1.8 A g–1.en
dc.language.isoenen
dc.relation.ispartofseriesThe journal of physical chemistry Cen
dc.subjectDRNTU::Science::Chemistry::Physical chemistry::Electrochemistryen
dc.titleElectrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteriesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
dc.contributor.researchEnergy Research Institute @ NTU (ERI@N)en
dc.identifier.doi10.1021/jp302574gen
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:ERI@N Journal Articles
MSE Journal Articles

SCOPUSTM   
Citations 5

164
Updated on Jun 18, 2020

Web of ScienceTM
Citations 1

168
Updated on Mar 5, 2021

Page view(s) 10

781
Updated on Oct 3, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.