Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/99218
Title: | Fourier transform-based scalable image quality measure | Authors: | Narwaria, Manish Lin, Weisi McLoughlin, Ian Vince Emmanuel, Sabu Chia, Clement Liang-Tien |
Keywords: | DRNTU::Engineering::Computer science and engineering | Issue Date: | 2012 | Series/Report no.: | IEEE transactions on image processing | Abstract: | We present a new image quality assessment algorithm based on the phase and magnitude of the 2-D discrete Fourier transform. The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the human visual system's sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of non-uniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Last, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is, therefore, further scalable for RR scenarios. We report extensive experimental results using a total of nine publicly available databases: seven image (with a total of 3832 distorted images with diverse distortions) and two video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing full-reference algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg.ezlibproxy1.ntu.edu.sg/home/wslin/reduced_phase.rar. | URI: | https://hdl.handle.net/10356/99218 http://hdl.handle.net/10220/13464 |
ISSN: | 1057-7149 | DOI: | 10.1109/TIP.2012.2197010 | Schools: | School of Computer Engineering | Rights: | © 2012 IEEE | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
5
92
Updated on Mar 10, 2025
Web of ScienceTM
Citations
5
66
Updated on Oct 28, 2023
Page view(s) 5
1,097
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.