Please use this identifier to cite or link to this item:
Title: Dynamic modelling of cell death during biofilm development
Authors: Fagerlind, Magnus G.
Webb, Jeremy S.
Barraud, Nicolas
McDougald, Diane
Jansson, Andreas
Nilsson, Patric
Harlén, Mikael
Kjelleberg, Staffan
Rice, Scott Alan
Keywords: DRNTU::Science::Biological sciences
Issue Date: 2011
Source: Fagerlind, M. G., Webb, J. S., Barraud, N., McDougald, D., Jansson, A., Nilsson, P., et al. (2011). Dynamic modelling of cell death during biofilm development. Journal of theoretical biology, 295, 23-36.
Series/Report no.: Journal of theoretical biology
Abstract: Biofilms are currently recognised as the predominant bacterial life-style and it has been suggested that biofilm development is influenced by a number of different processes such as adhesion, detachment, mass transport, quorum sensing, cell death and active dispersal. One of the least understood processes and its effects on biofilm development is cell death. However, experimental studies suggest that bacterial death is an important process during biofilm development and many studies show a relationship between cell death and dispersal in microbial biofilms. We present a model of the process of cell death during biofilm development, with a particular focus on the spatial localisation of cell death or cell damage. Three rules governing cell death or cell damage were evaluated which compared the effects of starvation, damage accumulation, and viability during biofilm development and were also used to design laboratory based experiments to test the model. Results from model simulations show that actively growing biofilms develop steep nutrient gradients within the interior of the biofilm that affect neighbouring microcolonies resulting in cell death and detachment. Two of the rules indicated that high substrate concentrations lead to accelerated cell death, in contrast to the third rule, based on the accumulation of damage, which predicted earlier cell death for biofilms grown with low substrate concentrations. Comparison of the modelling results with experimental results suggests that cell death is favoured under low nutrient conditions and that the accumulation of damage may be the main cause of cell death during biofilm development.
ISSN: 0022-5193
DOI: 10.1016/j.jtbi.2011.10.007
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCELSE Journal Articles

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.