Please use this identifier to cite or link to this item:
Title: Multiview semi-supervised learning with consensus
Authors: Li, Guangxia
Chang, Kuiyu
Hoi, Steven C. H.
Keywords: DRNTU::Engineering::Computer science and engineering::Data
Issue Date: 2012
Source: Li, G., Chang, K., & Hoi, S. C. H. (2012). Multiview semi-supervised learning with consensus. IEEE transactions on knowledge and data engineering, 24(11), 2040-2051.
Series/Report no.: IEEE transactions on knowledge and data engineering
Abstract: Obtaining high-quality and up-to-date labeled data can be difficult in many real-world machine learning applications. Semi-supervised learning aims to improve the performance of a classifier trained with limited number of labeled data by utilizing the unlabeled ones. This paper demonstrates a way to improve the transductive SVM, which is an existing semi-supervised learning algorithm, by employing a multiview learning paradigm. Multiview learning is based on the fact that for some problems, there may exist multiple perspectives, so called views, of each data sample. For example, in text classification, the typical view contains a large number of raw content features such as term frequency, while a second view may contain a small but highly informative number of domain specific features. We propose a novel two-view transductive SVM that takes advantage of both the abundant amount of unlabeled data and their multiple representations to improve classification result. The idea is straightforward: train a classifier on each of the two views of both labeled and unlabeled data, and impose a global constraint requiring each classifier to assign the same class label to each labeled and unlabeled sample. We also incorporate manifold regularization, a kind of graph-based semi-supervised learning method into our framework. The proposed two-view transductive SVM was evaluated on both synthetic and real-life data sets. Experimental results show that our algorithm performs up to 10 percent better than a single-view learning approach, especially when the amount of labeled data is small. The other advantage of our two-view semi-supervised learning approach is its significantly improved stability, which is especially useful when dealing with noisy data in real-world applications.
ISSN: 1041-4347
DOI: 10.1109/TKDE.2011.160
Rights: © 2012 IEEE
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Citations 5

Updated on Jan 26, 2023

Web of ScienceTM
Citations 10

Updated on Jan 25, 2023

Page view(s) 20

Updated on Feb 3, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.