Please use this identifier to cite or link to this item:
Title: Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system
Authors: Zhang, Feng
Yao, Yongchang
Su, Kai
Fang, Yu
Citra, Fudiman
Wang, Dong-An
Keywords: DRNTU::Science::Medicine::Tissue engineering
Issue Date: 2012
Source: Zhang, F., Yao, Y., Su, K., Fang, Y., Citra, F., & Wang, D. A. (2012). Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system. Journal of tissue engineering and regenerative medicine, in press.
Series/Report no.: Journal of tissue engineering and regenerative medicine
Abstract: Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered – the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.
ISSN: 1932-6254
DOI: 10.1002/term.1656
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Citations 20

Updated on Mar 9, 2021

Citations 20

Updated on Mar 9, 2021

Page view(s) 20

Updated on Jun 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.