Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/99324
Title: | The maximum number of minimal codewords in an [n,k]-code | Authors: | Alahmadi, A. Aldred, R. E. L. de la Cruz, R. Solé, P. Thomassen, C. |
Issue Date: | 2013 | Source: | Alahmadi, A., Aldred, R., de la Cruz, R., Solé, P., & Thomassen, C. (2013). The maximum number of minimal codewords in an [n, k] -code. Discrete Mathematics, 313(15), 1569-1574. | Series/Report no.: | Discrete mathematics | Abstract: | We survey some upper and lower bounds on the function in the title, and make them explicit for n≤15 and 1≤k≤15. Exact values are given for cycle codes of graphs for 3≤n≤15 and 1≤k≤13. | URI: | https://hdl.handle.net/10356/99324 http://hdl.handle.net/10220/17375 |
ISSN: | 0012-365X | DOI: | 10.1016/j.disc.2013.03.023 | Schools: | School of Physical and Mathematical Sciences | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
50
7
Updated on Mar 17, 2025
Web of ScienceTM
Citations
20
6
Updated on Oct 26, 2023
Page view(s) 50
609
Updated on Mar 26, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.