Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/99372
Title: | Domain transfer multiple kernel learning | Authors: | Duan, Lixin Tsang, Ivor Wai-Hung Xu, Dong |
Keywords: | DRNTU::Engineering::Computer science and engineering | Issue Date: | 2012 | Source: | Duan, L., Tsang, I. W., & Xu, D. (2012). Domain Transfer Multiple Kernel Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3), 465-479. | Series/Report no.: | IEEE transactions on pattern analysis and machine intelligence | Abstract: | Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different domains, we propose a new cross-domain kernel learning framework into which many existing kernel methods can be readily incorporated. Our framework, referred to as Domain Transfer Multiple Kernel Learning (DTMKL), simultaneously learns a kernel function and a robust classifier by minimizing both the structural risk functional and the distribution mismatch between the labeled and unlabeled samples from the auxiliary and target domains. Under the DTMKL framework, we also propose two novel methods by using SVM and prelearned classifiers, respectively. Comprehensive experiments on three domain adaptation data sets (i.e., TRECVID, 20 Newsgroups, and email spam data sets) demonstrate that DTMKL-based methods outperform existing cross-domain learning and multiple kernel learning methods. | URI: | https://hdl.handle.net/10356/99372 http://hdl.handle.net/10220/13492 |
ISSN: | 0162-8828 | DOI: | 10.1109/TPAMI.2011.114 | Schools: | School of Computer Engineering | Rights: | © 2012 IEEE | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
1
480
Updated on Mar 10, 2025
Web of ScienceTM
Citations
1
500
Updated on Oct 27, 2023
Page view(s) 20
759
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.