Please use this identifier to cite or link to this item:
Title: QoS-aware revenue-cost optimization for latency-sensitive services in IaaS Clouds
Authors: Duong, Ta Nguyen Binh
Li, Xiaorong
Goh, Rick Siow Mong
Tang, Xueyan
Cai, Wentong
Issue Date: 2012
Abstract: Recently, application service providers have been employing Infrastructure-as-a-Service (IaaS) clouds such as Amazon EC2 to scale their computing resources on-demand to adapt to dynamic workloads. Existing research has been focusing more on cloud resource scaling in batch processing, non latency-sensitive applications. In this paper, we consider the problem of revenue-cost optimization in cloud-based application service providers with stringent QoS requirements, e.g., online gaming services. We propose an integrated approach which combines resource provisioning algorithms and request scheduling disciplines. The main goal is to maximize the service provider's revenue via satisfying pre-defined QoS requirements, and at the same time, to minimize cloud resource cost. We have implemented the proposed resource provisioning algorithms and scheduling disciplines into a cloud scaling framework developed in our previous work. Extensive experiments have been conducted with a fully functional implementation and realistic workloads modeled after real traces of popular online game servers. The results demonstrated the effectiveness of our proposed approach.
DOI: 10.1109/DS-RT.2012.11
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Conference Papers

Citations 20

Updated on Jan 28, 2023

Web of ScienceTM
Citations 20

Updated on Jan 30, 2023

Page view(s) 10

Updated on Jan 28, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.