Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBonanni, Alessandraen
dc.contributor.authorAmbrosi, Adrianoen
dc.contributor.authorPumera, Martinen
dc.date.accessioned2013-08-02T06:47:24Zen
dc.date.accessioned2019-12-06T20:07:56Z-
dc.date.available2013-08-02T06:47:24Zen
dc.date.available2019-12-06T20:07:56Z-
dc.date.copyright2012en
dc.date.issued2012en
dc.identifier.citationBonanni, A., Ambrosi, A.,& Pumera, M. (2012). On Oxygen-Containing Groups in Chemically Modified Graphenes. Chemistry - A European Journal, 18(15), 4541-4548.en
dc.identifier.issn0947-6539en
dc.identifier.urihttps://hdl.handle.net/10356/99479-
dc.description.abstractReduced graphenes (belonging to the class of chemically modified graphenes, CMG) are one of the most investigated and utilized materials in current research. Oxygen functionalities on the CMG surfaces have dramatic influences on material properties. Interestingly, these functionalities are rarely comprehensively characterized. Herein, the four most commonly used CMGs, mainly electrochemically reduced graphene oxide (ER-GO), thermally reduced graphene oxide (TR-GO), and the corresponding starting materials, that is, graphene oxide and graphite oxide, were comprehensively characterized by a wide variety of methods, such as high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, UV/Vis spectroscopy, transmission electron microscopy (TEM), and voltammetry, to establish connections between the structures of these materials that carry different oxygen functionalities and their electrochemical behaviors. This was followed by the quantification of the negatively charged oxygen-containing groups (OCGs) by UV/Vis spectroscopy and of the electrochemically reducible OCGs by voltammetry. Lastly, a biofunctionalization with gold nanoparticle (AuNP)-modified DNA sequences was performed by the formation of covalent bonds with the carboxylic groups ([BOND]COOH) on the CMG surfaces. There was an evident predominance of functionalizable [BOND]COOH groups on the ER-GO surface, as confirmed by a higher amount of Au detected both with differential-pulse voltammetry and impedance spectroscopy, coupled with visualization by TEM. We exploited the DNA–Au bioconjugates as highly specific stains to localize and visualize the positions of carboxylic groups. Our findings are very important to clearly identify the presence, nature, and distribution of oxygen functionalities on different chemically modified graphenes.en
dc.language.isoenen
dc.relation.ispartofseriesChemistry - a European journalen
dc.titleOn oxygen-containing groups in chemically modified graphenesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1002/chem.201104003en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 5

55
Updated on Sep 4, 2020

PublonsTM
Citations 5

57
Updated on Mar 6, 2021

Page view(s) 50

356
Updated on Apr 22, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.