Please use this identifier to cite or link to this item:
Title: Salient object detection through over-segmentation
Authors: Zhang, Xuejie
Ren, Zhixiang
Rajan, Deepu
Hu, Yiqun
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2012
Abstract: In this paper we present a salient object detection model from an over-segmented image. The input image is initially segmented by the mean-shift segmentation algorithm and then over-segmented by a quad mesh to even smaller segments. Such segmented regions overcome the disadvantage of using patches or single pixels to compute saliency. Segments that are similar and spread over the image receive low saliency and a segment which is distinct in the whole image or in a local region receives high saliency. We express this as a color compactness measure which is used to derive saliency level directly. Our method is shown to outperform six existing methods in the literature using a saliency detection database containing images with human-labeled object contour ground truth. The proposed saliency model has been shown to be useful for an image retargeting application.
DOI: 10.1109/ICME.2012.166
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Conference Papers

Citations 20

Updated on Jan 26, 2023

Page view(s) 10

Updated on Jan 30, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.