Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99488
Title: Nucleic acid functionalized Graphene for biosensing
Authors: Bonanni, Alessandra
Ambrosi, Adriano
Pumera, Martin
Issue Date: 2012
Source: Bonanni, A., Ambrosi, A.,& Pumera, M. (2012). Nucleic Acid Functionalized Graphene for Biosensing. Chemistry - A European Journal, 18(6), 1668-1673.
Series/Report no.: Chemistry - a European journal
Abstract: There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.
URI: https://hdl.handle.net/10356/99488
http://hdl.handle.net/10220/12941
ISSN: 0947-6539
DOI: 10.1002/chem.201102850
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.