Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/99506
Title: | Response surface methodology with prediction uncertainty : a multi-objective optimisation approach | Authors: | Chi, Guoyi Hu, Shuangquan Yang, Yanhui Chen, Tao |
Issue Date: | 2011 | Source: | Chi, G., Hu, S., Yang, Y.,& Chen, T. (2012). Response surface methodology with prediction uncertainty: A multi-objective optimisation approach. Chemical Engineering Research and Design, 90(9), 1235-1244. | Series/Report no.: | Chemical engineering research and design | Abstract: | In the field of response surface methodology (RSM), the prediction uncertainty of the empirical model needs to be considered for effective process optimisation. Current methods combine the prediction mean and uncertainty through certain weighting strategies, either explicitly or implicitly, to form a single objective function for optimisation. This paper proposes to address this problem under the multi-objective optimisation framework. Overall, the method iterates through initial experimental design, empirical modelling and model-based optimisation to allocate promising experiments for the next iteration. Specifically, the Gaussian process regression is adopted as the empirical model due to its demonstrated prediction accuracy and reliable quantification of prediction uncertainty in the literature. The non-dominated sorting genetic algorithm II (NSGA-II) is used to search for Pareto points that are further clustered to give experimental points to be conducted in the next iteration. The application study, on the optimisation of a catalytic epoxidation process, demonstrates that the proposed method is a powerful tool to aid the development of chemical and potentially other processes. | URI: | https://hdl.handle.net/10356/99506 http://hdl.handle.net/10220/12939 |
ISSN: | 0263-8762 | DOI: | 10.1016/j.cherd.2011.12.012 | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCBE Journal Articles |
SCOPUSTM
Citations
5
42
Updated on Sep 4, 2020
PublonsTM
Citations
5
38
Updated on Mar 6, 2021
Page view(s) 20
564
Updated on May 24, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.