Please use this identifier to cite or link to this item:
Title: Co(II)-tricarboxylate metal–organic frameworks constructed from solvent-directed assembly for CO2 adsorption
Authors: Li, Pei-Zhou
Wang, Xiao-Jun
Li, Yongxin
Zhang, Quan
Tan, Desmond Rong He
Lim, Wei Quan
Ganguly, Rakesh
Zhao, Yanli
Keywords: DRNTU::Engineering::Materials
Issue Date: 2013
Source: Li, P. Z., Wang, X. J., Li, Y., Zhang, Q., Tan, R. H. D., Lim, W. Q., et al. (2013). Co(II)-tricarboxylate metal–organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous and mesoporous materials, 176, 194-198.
Series/Report no.: Microporous and mesoporous materials
Abstract: A series of Co(II)-tricarboxylate metal–organic frameworks (MOFs), {Co3O(HBTC)2(H2O)(DMF)}n (1), {Co2(BTC)Cl(DEF)3}n (2), {Co3O(BTB)2(DMF)·2(N(CH3)2)·(H2O)}n (3), and {Co3(HCOO)(BTB)2 (DEF)·(N(C2H5)2)}n (4) (BTC = 1,3,5-benzenetricarboxylate, BTB = 4,4′,4″-benzene-1,3,5-triyltribenzoate, DMF = N,N′-dimethylformamide, DEF = N,N′-diethylformamide), were synthesized by solvothermal reaction in the presence of phthalic acid under different solvents (DMF and DEF). Synthetic investigations and structural analyses reveal that the two pairs of MOFs show distinct frameworks with remarkable solvent-directed feature, although they were assembled from the same starting materials, i.e., CoCl2·6H2O with tricarboxylate-BTC for 1 and 2, or with expanded derivative BTB for 3 and 4. The CO2 adsorption properties of these MOFs were investigated and the results indicate that the activated MOF 1 presents the highest CO2 uptake capability of 85.8 cm3 g−1 at 1 atm and 273 K.
ISSN: 1387-1811
DOI: 10.1016/j.micromeso.2013.03.052
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.